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1. INTRODUCTION 
 

Mathematical modeling and experimental methods have been used by researchers to understand 
the optical effects of laser beam penetration in the aqueous humor. These models and 
experiments reveal the phenomena of thermal lensing of the laser beam [Vincelette, et. al, 2007].  

 
Water is heated by the power absorbed from an attenuated laser beam. The temperature changes 
of the heated water cause localized refractive-index changes in the propagating medium. 
Therefore, a quantitative analysis of local temperature changes caused by the laser heating could 
facilitate a better understanding of the laser lensing effects. 

 
Laser heating is caused by coupled convective and conductive transport of thermal energy. The 
experimental results of Vincelette, et. al. [2007] suggests the importance of thermal convection 
upon the optical properties of laser beam penetration.  
 
When conductive effects predominate, and convective effects are negligible, the thermal changes 
can be observed as circularly-symmetric temperature profiles. Circularly asymmetric 
temperature patterns can be observed when the convective effects become relevant. 
 
In this report, simulation results for laser heating of water will be presented, and the conductive 
and convective heating effects will be evaluated. 
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2. SIMULATION OF CONDUCTIVE AND CONVECTIVE HEAT TRANSFER AND 
TEMPERATURE CHANGES DUE TO LASER HEATING OF WATER: 
MATHEMATICAL AND THEORETICAL BACKGROUND 

 
 2.1  BASIC PRINCIPLES AND MATHEMATICAL EQUATIONS 
 
Thermal heating is modeled using the thermal transport equation coupled with the Navier-Stokes 
and continuity equations. The thermal transport equation describes temperature changes caused 
by thermal convection and conduction, while the Navier-Stokes and continuity equations 
describe the convective velocity caused by spatial variations of the buoyancy force. The spatial 
variations in the buoyancy force result from temperature-dependent density gradients. Thus, the 
Navier-Stokes, continuity, and thermal transport equations form a set of coupled, partial -
differential equations from which the fluid convective transport and the temperature variations 
can be determined. 
 
The fluid flow is governed by the Navier-Stokes equations [Landau and Lifshitz,1959; 
Batchelor, 1967]: 

 
 

                                                                               (1) 
,)( 2 FVPVV

t
V rrvr
r

=∇−∇+∇•+
∂
∂ ηρρ

 
and the continuity condition for incompressible flow 
 
     (2) ,0=•∇ V

r

 
where ρ denotes the density, and η denotes the dynamic viscosity of the liquid, t denotes time 
and F

r
 denotes the body force caused by spatially varying buoyancy effects. 

 
The equation for conductive and convective heat transfer is 
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where C is the specific heat (J / kg•K) and k is the thermal conductivity of the liquid (W/(m•K)). 

 is a heat-source term (W/mSQ& 3), and T is the temperature (K)  [Incropera, et al, 2007].  
 
The heat-source term, , denotes the heat absorbed (per unit volume) by the laser.  This term 
can be expressed as [Torres et al, 1993]. 

SQ&
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where aμ  is the absorption coefficient of the material (m-1). Using Beer’s law as a first 
approximation, the magnitude of the laser energy flux is given as 
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Here, P is the power of the incident laser beam* (W), RW is the e-1  laser beam radius (m), r is the 
radial coordinate and z is the axial coordinate. The position of the central axis of the laser beam 
is denoted as r0.  When rectangular coordinates (x,y,z) are used, with a center axis at (x0,y0),  r − 
r0  is  given as 
 

2
0

2
00 )()( yyxxrr −+−=− . (5a) 

   
To model transient effects from a continuous-wave laser,  f(t) is a unit-step function.  
 
The Boussinesq approximation, which is explained in the next paragraph, is used to determine 
the effect of temperature gradients upon the convective velocity of the liquid. The temperature-
dependent density variations produce spatial variations of the buoyant force within the liquid. 
Thus, the x and y components of the gravitational body-force, F, are 
 
   
  (6) 

)( 
,0

TgF
F

y

x
ρ−=

=

 
 
where g is the acceleration of gravity (9.81 m/s2), ρ(T)  is the temperature-dependent density of 
the liquid (kg/m3). A plot of density, ρ(T) verses temperature, T. for water is shown in Figure 1 
[Comsol Lib., 2006]. 
 
 
 
 

                                                 
* To determine the incident laser power P, the reflection losses at the front face must be taken into account. Thus, P 
is equal to the power of the laser multiplied by the fraction of the laser power that is transmitted through the front 
face of the container. 
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Figure 1. A plot of density versus temperature of water is shown. 
 

  
Equation (6) is substituted into the body-force term at the right of the equal sign in equation (1). 
Note that, as indicated by equation (6), the body-force term in the Navier-Stokes equation (1) is 
temperature dependent. Also, the convective term in the heat-transport equation 
(3) is velocity dependent. Thus, equations (1), (2) and (3) form a coupled set of partial 
differential equations.  
 
The Boussinesq approximation is used to determine the effect of temperature gradients upon the 
convective velocity of the liquid [Acheson, 1990; Drazin and Reid, 1981; Incropera, et al, 2007; 
Tritton, pp. 188-195, 1998]. According to the Boussinesq approximation, all density parameters 
in the equations (1) and (3) are constants (where ρ = 100 0kg/m3), with the exception of the 
density variations involved with the buoyant force, which is included as a  body-force term in the 
Navier-Stokes equation. The components of the temperature-dependent body-force are given by 
equation (6). The incompressibility condition, given by equation (2), is included as part of the 
Boussinesq approximation.  
 
 
 2.2   DIMENSIONLESS PARAMETERS: 
 
Dimensionless parameters involved in convective and conductive heat and mass transport of an 
incompressible fluid are the Reynolds number and the Rayleigh number. The Reynolds number, 
Re, is expressed as 
 

    
η
ρ dV  Re = , (7) 

 
Where V  denotes the velocity scale, and d denotes the length scale (equal to a length of a side 
of the container). Also, ρ denotes the density, and η denotes the dynamic viscosity of the liquid. 
The Reynolds number expresses the order-of-magnitude estimate of the ratio of the inertia terms  
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to the viscous term in the Navier-Stokes equation. High Reynolds numbers indicate flow 
instability for transition to turbulence [Landau and Lifshitz,1959]. In our investigation, the 
calculated Reynolds numbers are on the order of 1 – 10, indicating the non-existence of 
turbulence, but also indicating that the non-linear term and the time-dependent term in the 
Navier-Stokes equation cannot be neglected.   
 
The Rayleigh number, Ra, given as 
 
 
 (8) 
 
where g is the acceleration of gravity (9.81 m/s2), α is the thermal expansion coefficient of the 
liquid (K-1), ΔT is the magnitude of the spatial variation of temperature (K), and dT denotes the   
length scale over which the thermal gradients are effective. The thermal diffusitivity of the fluid, 
κ (m2/s), is given as 

( ) , 
3

ηκ
ρα TdTg Δ

=Ra

 

C
k
 ρ

κ = .   (9) 

 
The Rayleigh number indicates the instability of a heated liquid to the formation of convective 
flow. That is, at high Rayleigh numbers, convective flow is expected to occur. (For example, for 
flow between two rigid horizontal plates, separated by a vertical distance dT, instabilities leading 
to convective flow occur when Ra  exceeds a critical Rayleigh number of 1708 [Velarde, M.G., 
and Normand, 1980; Drazin and Reid,1981]. A critical value of the Rayleigh number 
corresponding to the physics and geometry of the problems considered in this report is not 
known.) As indicated by equations (8) and (9), an increase in the dynamic viscosity and/or in the 
thermal diffusitivity of the fluid would inhibit the formation of convective thermal flow. 
 
Of course, for the problems considered in this report, neither the Reynolds number nor the 
Rayleigh number can be determined a-priori; the convective velocity term in the Reynolds 
number and the temperature difference term in the Rayleigh number must be determined as 
solutions to the problem. 
 
 2.3 SIMULATION PARAMETERS: 
 
The simulation results for conductive and convective heat exchange are obtained using 
COMSOL Software, in which finite-element techniques are used with the Galerkin method 
[Reddy and Gartling, 2001; Zimmerman, 2006]. Computational results are given in the next few 
chapters:  Results for a two-dimensional problem are given in chapter 3. Results for three-
dimensional problems are given in chapter 4. Results for the three-dimensional problem I, in 
which all boundaries are thermally insulated, are given in section 4.1. Results for the three-
dimensional problem II, in which heat transfer takes place at the front surface and all other 
surfaces are thermally insulated, are given in section 4.2. Free-surface affects are discussed in 
chapter 5.  Evaporative effects are discussed in section 5.1, and Marangoni effects, involving 
thermally-induced surface tension, are discussed in section 5.2.  
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In the simulations described in chapters 3 and 4 of this report, the following assumptions and 
approximations are made: 
 

1. Light scattering is negligible compared to absorption. 
2. The Boussinesq approximation is used with the incompressibility condition for the fluid. 
3.  Non-slip boundary conditions (with zero velocity) apply to all surfaces. 
4. Viscous dissipative losses are negligible. 
5. Temperature variations of η, k, and C are not considered.  (First Approximation) The 

parameters representing the dynamic viscosity, thermal conductivity and specific heat of 
the liquid are considered as constants with the values listed in table 1.  

 
The parameters defining all simulations of chapters 3 and 4 are given in table 1. 
 
Table 1.  Parameter values used for all two-dimensional and three-dimensional heat conduction/convection 
problems [COMSOL Lib, 2007] 

Parameter name Symbol Value Units 
9(10−−4 )  dynamic viscosity kg/(m•s) η 

thermal conductivity k 0.6114  W/(m•K) 
specific heat C 4200  J/(kg•K) 
incident laser power P 1 W 
e−1 beam radius 1.5(10−3) RW m 

m−1absorption  coefficient 150 aμ  
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Density of water 1000 ρ (**) Kg/m3

** According to the Boussinesq approximation, ρ is constant, with the exception of the buoyant 
body-force term given by equation (6).  
 
 
To approximate the Rayleigh number of water for small temperature variations, ΔT, around 295 
K, the coefficient of thermal expansion, α, of 3(10−4) [K-1], and g equal to 9.81 m/sec2 are used. 
For the model described in this chapter, the order of the distance over which temperature 
variations are significant, is taken as  dT  = 10-2 meters. These values and the values of the 
parameters given in table 1 are substituted into equations (8) and (9) to obtain an approximation 
of the Rayleigh number in terms of the temperature variation, ΔT. The approximate result is 
 
Ra ≈ 2.7(104) ΔT,                                                                               (10) 
 
where ΔT is given in units K. As indicated by equation (10), large values of the Rayleigh number 
exist for small temperature variations. This suggests the presence of convective flow for the 
temperature variations within the size of the container considered in this report. 
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3. SIMULATION OF HEAT TRANSPORT WHEN A HORIZONTAL LASER 
BEAM IS NORMAL TO A TWO-DIMENSIONAL PLANE SURFACE: 

 
For illustrative purposes, a two-dimensional problem is first considered. This problem involves 
the simulation of heat transport when the heat source consists of a horizontal laser beam that is 
normal to and at the center of a two-dimensional plane surface. The heat source is represented by 
equations (4) and (5) where the term describing exponential decay in z (the ze aμ− term in 
equation (5) is set equal to one. For this problem, non-slip (zero-velocity) fluid-dynamic 
boundary conditions and thermally-insulated thermal boundary conditions exist on all surfaces. 
The initial temperature is 293.15 K, and the initial velocity everywhere is zero. 
 
The simulated results are obtained using Comsol finite-element software with 24,656 degrees of 
freedom; 1,925 mesh points; and 3,728 triangular elements.  
 
The geometry is shown in Figure 2. The temperature profiles at times equal to one and three 
seconds are shown in figures 3 and 4 respectively. The horizontal centerlines are drawn in these 
figures to demonstrate the vertical asymmetry of the temperature profile and to thereby illustrate 
the vertical convective effects of the heat transfer. The vertical centerlines are drawn to illustrate 
the horizontal symmetry of the temperature profile. A convective flow pattern is shown to exist 
at time equal to three seconds.  
 
Convective velocity vectors are shown at time equals three seconds in figure 5. Note the closed 
paths formed by the flow vectors; this property is consistent with the solenoidal properties of the 
velocity vector, as indicated by equation (2). 
 
Temperature profiles, as functions of y, along the central vertical axis (where x=0.01m) at 
various times are shown in figure 6.  Note that the temperature profile is almost symmetric about 
the central vertical position (y = 0.01 m) at time equal to 0.3 seconds. However, as time 
increases, the vertical asymmetry of the temperature profile about the central horizontal position 
increases. This asymmetry illustrates the occurrence of convective heat transfer.  
 
Temperature profiles, as functions of x, along the central horizontal axis (where y = 0.01m) at 
various times are shown in figure 7. These plots are used to check the results for the expected 
left-right symmetry properties of the solutions.  
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Figure 2.  The geometry for the two-dimensional problem is shown. The laser beam (with its e−1 radius) is illustrated 
by the solid circle. All boundaries are thermally insulated, and the fluid velocity at all boundaries is zero (the non-
slip boundary condition applies). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Results for the two-dimensional problem are shown. The temperature profile is given at time equals one 
second. Minimum temperature equals 293 K; maximum temperature equals 294.6 K. The horizontal centerline is drawn 
to indicate the slight vertical asymmetry of the temperature distribution; this illustrates an early stage of convective flow.  
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Figure 4.  Results for the two-dimensional problem are shown. The temperature profile at time equals three seconds 
is given.  Minimum temperature equals 293 K; maximum temperature equals 299 K.  The horizontal centerline is 
drawn to indicate the vertical asymmetry of the temperature distribution; this illustrates effects of convective flow.  
 
 

 
 
Figure 5.  Results for the two-dimensional problem are given. Convective fluid velocity vectors at time t = 3s are 
shown. Note the convective flow profile. The maximum amplitude of the velocity is 4.4 mm/sec. 
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Figure 6.  Results for the two-dimensional problem are given. Temperature profiles along the central vertical axis 
(where x = 0.01 m) are shown at various times. The asymmetry (about the center-y-position at y = 0.01 m) of the 
temperature in the y-direction is indicative of convective flow. This asymmetric pattern is shown to increase with 
time. 

[ m]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Results for the two-dimensional problem are given. Plots are shown of temperature profiles along the 
central horizontal axis (where y = 0.01 m) at various times. These results are presented to demonstrate the extent of 
the right-left symmetry (about the central-x position at x =  0.01 m) of the result. 

[m][ m][m]

[ m ][ m ]



4. SIMULATION OF HEAT TRANSPORT WHEN A HORIZONTAL LASER 
BEAM IS NORMAL TO A PLANE SURFACE OF A THREE-DIMENSIONAL 
RECTANGULAR CONTAINER 

 
 4.1  THREE-DIMENSIONAL PROBLEM 1: SIMULATION APPLIED TO 

THERMAL BOUNDARY CONDITIONS IN WHICH ALL SURFACES 
ARE THERMALLY INSULATED 

 
For the three-dimensional problem 1 considered in this chapter, thermally-insulated thermal 
boundary conditions are specified on all surfaces. Also, non-slip fluid-dynamic boundary 
conditions are specified on all surfaces. The x-y faces are perpendicular to the laser beam. The 
laser beam enters perpendicularly to the front face at z = 0, and the laser penetrates with 
exponential decay in the z-direction (Beer’s Law). As illustrated in figure 8, the faces 
perpendicular to the laser beam are specified with dimensions 0 ≤ x ≤ 0.02 m, and  0 ≤ y ≤  0.02 
m and the penetration distance extends from z = 0 to z = 0.04 m. The initial temperature is 
293.15K, and everywhere the initial velocity is zero. 
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Figure 8.  The geometry for the three-dimensional problems 1 and 2 is illustrated. The arrow shows the direction of 
propagation and attenuation of the laser beam. The coordinates are shown in meters, where 

m.04.0z0 and  m, 20.0y0  m, 20.0x0 ≤≤≤≤≤≤  
 
The simulated results are obtained using Comsol finite-element software with 27,793 degrees of 
freedom; 969 mesh points; and 4310 tetrahedral elements.  
 
The temperature profile at the front face (where z = 0) at time equals four seconds is shown in 
figure 9. A horizontal centerline is drawn to illustrate the vertical asymmetry of the temperature 
profile. The temperature profile through a central y-z plane (where x = 0.01m) at time equals 4 
seconds is shown in figure 10.  
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Temperature profiles, as functions of y, along the vertical central axis (where x = 0.01m) at the 
front face (z = 0) at various times are shown in figure 11. The temperature profile is almost 
vertically symmetric (about the central y position at y = 0.01m) at time equals one second. 
However, the vertical asymmetry of the temperature profile is shown to increase with increasing 
time.  
 
Temperature profiles, as functions of y, along the central vertical axis (where x = 0.01m) at time 
equals three seconds are shown for various values of z in figure 12. Note the asymmetry in the y-
direction. The vertical asymmetry of the temperature profiles, as shown in figures 9 to 12, are 
indicative of thermal convective effects. 
 
Temperature profiles, as functions of x, along the central horizontal axis (where y = 0.01m) at 
time equals three seconds are shown for various values of z in figure 13. These results are 
plotted as a check to determine the horizontal symmetry of the solution. As expected, these 
results show that the solutions are close to being symmetric in the horizontal direction about the 
central horizontal position (at x = 0.01m). The small deviation from perfect symmetry in the x-
direction is believed to be caused by a small computational inaccuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Results for the three-dimensional problem 1 are given. The temperature profile at the front face is shown 
at t = 4s.  A horizontal centerline is drawn to illustrative vertical asymmetry caused by convection. A vertical 
centerline is drawn to evaluate the expected symmetry in the horizontal direction.  Maximum temperature equals 
302.7 K; minimum temperature equals 293.15 K 
      

14 
Distribution A, APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



15 
Distribution A, APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

       
 
Figure 10.  Results for the three-dimensional problem 1 are given. The temperature profile through a central y-z 
plane (where x = 0.01m) at t = 4s is presented. Note the vertical asymmetry of the temperature profile. Maximum 
emperature equals 302.8K; minimum temperature equals 293.15 K.  t
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 11.  Results for the three-dimensional problem 1 are given.   Temperature profiles along the vertical central 
axis (where x = 0.01m) at the face (z = 0) at various times are presented. Note the increase in the vertical asymmetry 
of the temperature about the central y position (at y = 0.01 m) with increasing time.  The dip in temperature below 
293K is caused by a small computational inaccuracy. 

[ m ][ m ]



[ m ][ m ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.  Results for the three-dimensional problem 1 are given. Temperature profiles as a function of y along the 
central vertical axis (x = 0.01m) are shown for time equals three seconds. Results are presented for various values of 
z. Note the asymmetry in the y-direction; this illustrates effects of vertical convection. The dip in temperature below 
293K is caused by a small computational inaccuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.  Results for the three-dimensional problem 1 are given. Temperature profiles as a function of x along the 
central horizontal axis (y = 0.01) at time equals three seconds are shown. Results are presented for various values of 
z. These results were plotted as a check for the evaluation of the horizontal symmetry of the solution.  
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 4.1.1    ENERGY-CONSERVATION CHECKS OF THE SOLUTIONS OF 
THREE-DIMENSIONAL PROBLEM 1 

 
In three-dimensional problem1, all surfaces are specified to be rigid and thermally insulated; 
therefore, energy conservation is easily accounted for within the enclosed volume of the 
container.  Energy conservation principles, involving the first law of thermodynamics, can be 
used as a means of checking the results of this problem***. Since no external work is performed 
by the fixed surfaces, and there is no heat loss from the thermally insulated surfaces, according 
to the first law of thermodynamics, 
 
Energy Input = Internal Energy Increase (for any time duration, td),  
 
When the laser power input is constant, during a laser time duration, td , the energy input is given 
as 
 

∫∫∫=
Vol

sd dVQt  z)y,(x,Input Energy & , (11) 

 
integrated over the volume of the container. 
 
The Energy Input [J] can be determined by substituting equations (4) and (5), with the 
parameters given in table 1, into the integral expression (11).  Evaluating the integral over the 
rectangular volume of the container, we get the result for a laser time duration td and input laser 
power, P: 
 

Ei  = [ ]Za L
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d e
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⎞
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⎛
1 

2
 

2
  , (12) 

 
where erf( ) denotes the error function. Substituting aμ = 150 m-1, P equals 1W, RW equals1.5 
(10-3) m with the container dimensions: LX equals 0.02m, LY equals 0.02m, and LZ equals 0.04 
m, we get the following result the energy input during time duration, td :  
 
Ei = 0.9975 td (12a) 
 
The internal energy increase [J] of the liquid during the laser time duration td [s] can be 
calculated as 
 
 
 , (13) [ ]dVTzyx(Internal ∫∫∫ TC

Vol
 ),,Increase Energy 0−= ρ
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*** For the small convective velocities involved, viscous dissipation of energy can be neglected. 
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where T(x,y,z) is the calculated temperature at time td, and T0  is  the specified initial 
temperature  (T0  = 293.15K). The integration is over the volume of the container. 
 
The internal energy increase is determined by substituting ρ = 1000 kg/m3, C equal to 4200 
J/(kg•K) and the initial condition, T0 equal to 293.15K, into the integral expression (13) . Here 
the integral is evaluated using the post-processing capability of COMSOL software, where a 
numerical integration is performed using the evaluated results for T(x,y,z).   
 
Calculated results for input energy, internal energy increase, and the percent difference between 
the energy input, Ei, and the internal energy increase in are shown in terms of the specified time 
durations in table 2. These results appear to show reasonable agreements between the calculated 
energy input and the calculated internal energy increase, especially for laser time durations 
greater than one second. 
 
Table 2:  Results of the energy conservation check. Laser time duration, input energy, internal energy increase, and 
percent difference between the input energy and the internal energy increase of the water in the closed container. 
 
td (sec) Input Energy  

(Joules) 
Internal Energy Increase 
(Joules) 

Percent Difference 

1 0.998 0.896 10.2 
2 1.996 1.854    7.1 
3 2.794 2.919    4.6 
4 3.992 3.897    3.4 
5 4.990 4.851    2.9 
6 5.988 5.771    3.6 
7 6.986 6.690    4.2 
8 7.984 7.610     4.7 
 
 
 4.2   THREE-DIMENSIONAL PROBLEM 2:  SIMULATION APPLIED TO 

THERMAL BOUNDARY CONDITIONS WHERE HEAT TRANSFER 
OCCURS AT THE FRONT SURFACE (AT Z = 0) AND ALL OTHER 
SURFACES ARE THERMALLY INSULATED 

 
The problem considered in this chapter is identical to the three-dimensional problem 1, treated in 
section 4.1, with the exception that here heat transfer between the container and its surroundings 
occurs at the front surface where z = 0. Thermally-insulated thermal boundary conditions are 
specified on the other surfaces. Also, similar to problem 1, non-slip fluid-dynamic boundary 
conditions are specified on all surfaces. The x-y faces are perpendicular to the laser beam. The 
laser beam enters perpendicularly at the center of the front face at z = 0, and the laser penetrates 
with exponential decay in the z-direction. As illustrated in figure 8, the faces perpendicular to the 
laser beam have specified dimensions 0 ≤ x ≤ 0.02 m, and  0 ≤ y ≤  0.02 m and the penetration 
distance extends from z = 0 to z = 0.04 m. The parameters specified in table 1 apply. 
 
 
 



The heat transfer at the z=0 surface is described by Newton’s Law of Cooling [Incropera, et al, 
2007; Wolfram Research, 2006]. The initial temperature in the container is 293.15K, and the 
initial velocity is zero everywhere. Convective heat exchange occurs between the surface at z=0 
and the surroundings, which are at a fixed temperature of 293.15K. The thermal boundary 
condition at the z=0 surface is specified with a heat-transfer rate of  [W/msurfQ& 2]: 
 

)15.293  |( 0 −−= =zsurf TheQ& , (14) 

 
where T|z=0 is the temperature of the fluid at z = 0+, and the parameter he is specified as  he = 
15 [W/(m2

•K] **  The  boundary value, T|z=0 , interactively computed at z = 0,  is dependent 
upon the coordinates x and y and time t. The sign convention is that heat flow into the fluid at 
the z = 0 boundary is positive; this explains the minus sign in equation (14). 
 
The simulated results are obtained using Comsol finite-element software with 27,793 degrees of 
freedom; 969 mesh points; and 4310 tetrahedral elements.  
 
The temperature profile at the front face (where z=0), at time equals four seconds, is shown in 
figure 14.  A horizontal centerline is drawn to illustrative vertical asymmetry (about the central 
horizontal axis at y = 0.01m) due to vertical convection. A vertical centerline is drawn to 
evaluate the expected symmetry in the horizontal direction.  
  
The temperature profile through the central vertical y-z plane (where x = 0.01m) at time equals 
four seconds is shown in figure 15. Here, the horizontal line is drawn to show vertical 
asymmetry in temperature due to thermal convection. 

Figure 16 shows the calculated temperature profiles along the vertical central axis (at x=0.01m) 
at the front surface (z = 0) at various times. Figure 17 shows the calculated temperature profiles, 
at various values of z, as a function of y along the central vertical axis (where x=0.01) at time 
equals four seconds. The vertical center, at y=0.01m, is drawn on figures 16 and 17 to illustrate 
the vertical asymmetry of the calculated temperature profiles.  
 
Temperature profiles as a function of x along the central horizontal axis (where y = 0.01m) at 
time equals four seconds are shown for various values of z in figure 18. These results are plotted 
as a check to evaluate the horizontal symmetry of the solution. The results demonstrate the near 
horizontal symmetry (about the central position at x = 0.01 m) of the calculated temperature 
profiles. Slight deviations from perfect horizontal symmetry can be attributed to small 
inaccuracies in the computational method.  
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** The value specified by the parameter he is arbitrary. The value of he=15 corresponds to the heat-transfer 
coefficient from skin to air. The value of he for the air/container interface is dependent upon the thermal-insulation 
properties of the wall of the container and its surroundings. Since this value is unknown, a value of he=15 is chosen 
here. 
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Figure 14.  Results for three-dimensional problem 2 are given. The temperature profile at the front face at time 
equals four seconds is shown.  A horizontal centerline is drawn to illustrate vertical asymmetry (about the central 
horizontal axis) due to thermal convection. A vertical centerline is drawn for the evaluation of the expected 
symmetry in the horizontal direction.  Maximum temperature equals 296.2 K; minimum temperature equals 
293.15K 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.  Results for three-dimensional problem 2 are given. The temperature profile through the central vertical 
plane (at x = 0.01m) at time equals four seconds is presented. The horizontal line is drawn to show vertical 
asymmetry due to convection.  Maximum temperature equals 296.2K; Minimum temperature equals 293.15K. 
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Figure 16.  Results for three-dimensional problem 2 are given. The temperature profiles along the vertical central 
axis (at x = 0.01m) at the front face (where z = 0) at various times are presented  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17.  Results for three-dimensional problem 2 are given. The temperature profiles, as a function of y, along 
the central vertical axis (where x = 0.01) at time equals four seconds are presented. Results are shown for various 
values of z. Note the asymmetry in the y-direction; this illustrates effects of vertical convection. 
 
 
 
 
 



 
 
Figure 18.  Results for three-dimensional problem 2 are given. Temperature profiles as a function of x along the 
central horizontal axis (y = 0.01) at time equals four seconds are presented. Results are shown for various values  
of z. These results are plotted as a check for the evaluation of the horizontal symmetry of the solution.  
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5. FREE-SURFACE EFFECTS 
 
The problems described in chapter 4 involve heat transfer in closed containers. For the problem 
considered in section 4.1, all boundaries are thermally insulated.  For the problem considered in 
section 4.2, convective heat transfer occurs between the front boundary (at z = 0) and its 
surroundings. The fluid-dynamic boundary conditions for problems described in sections 4.1 and 
4.2 involve zero velocity at the walls (the non-slip conditions for fixed surfaces).  
 
In this chapter, the effects of free-surface boundary conditions are discussed. These surface 
effects include convective and evaporative heat transfer and surface-tension induced by 
temperature gradients on the surface (the Marangoni Effect). 
 
 5.1  EVAPORATIVE AND CONVECTIVE HEAT TRANSFER AT A FREE 

SURFACE: 
 
Two mechanisms of energy exchange can take place at the air-liquid surface, at z = 0. One 
mechanism involves the convective heat transfer between the liquid at density ρL (kg/m3) and the 
vapor at density ρv (kg/m3). The other mechanism involves heat loss from water evaporation at z 
= 0 [Tilbas and Sami, 1998]. Thus, the thermal boundary condition at z = 0 (at the air-water 
interface) is 
  

surfvap
0

QQ && +=
∂
∂

=ZZ
Tk . (15) 

 

The heat evaporation term,  [W/mvapQ& 2],  at z = 0 is  

 

( )v(inf)v(sat)mfgvap hh ρρ −=Q& . (16) 

 

Here hfg is the parameter representing enthalpy change due to evaporation (J/kg), hm is the mass-
transport coefficient (m/s), ρv(sat) is the mass density of the water vapor at the water surface, and 
ρv(inf)  is the mass density of the water vapor at the room temperature. The convective heat 
transfer term at z=0, , is given by equation (14). surfQ&

 
 

Consider a cylindrical column of water with a laser beam heat source and with heat transfer due 
to evaporation and convection at the top (z = 0) surface as shown in figure 19. 
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Figure 19.  The geometry for the simulation involving the evaporative and convective heat transfer at the z = 0 
surface is illustrated. The height of the cylinder equals 1 cm, and the radius of the cylinder equals 0.5 cm. The laser 
beam enters perpendicularly at the top (at z = 0) surface. The problem is circularly symmetric. 
 

The heat conduction equation is 

( ) SQTk
t
Tc &=∇•∇−
∂
∂ρ . (17) 

For simplicity, heat convection within the fluid is not considered in this chapter. 

The heat source term,  SQ& ,  is described by equations (4) and (5) (with appropriate alterations 
corresponding to the cylindrical geometry for the problem solved in this chapter). The problem 
is solved in cylindrical coordinates with axial symmetry. 
The problem is solved using COMSOL software. As evaporation takes place, the water layer is 
depleted at the evaporative surface at z=0. To account for the depleted water layer, the problem 
is solved with moving coordinates (moving boundaries).  That is, at z=0, the mass depletion per 
unit surface area per unit time (kg/(m2s) ) is calculated as 
 

( )v(inf)v(sat)mh ρρ −=M& . (18) 
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The surface velocity of the moving boundary at z = 0 is 

L
0Z

Mv
ρ

&
==z , (19) 

where ρL is the density of the liquid water at the evaporating surface. 
 
The parameters describing this problem are shown in Table 3a, and the relations used are shown 
in Table 3b. The simulated results are obtained using Comsol finite-element software with 3,271 
degrees of freedom; 277 mesh points; and 406 triangular elements.  
 
Results showing the temperature profiles at time equals eight seconds are shown in figure 20. 
Alterations in the shape of the top surface were small and were not apparent in figure 20 for the 
incident laser power (1W) considered. Alterations in the shape of the top surface would be 
observed if higher laser power were used in the simulation.  
 
 
Table 3a.  Parameters describing the free-surface problem 

 
Parameters
Tinf 293.15 Room Temp (K)
he 15 Heat convection coeff (W/m^2K)
hfg 2.35e6 phase-change  enthalpy (J/kgK)
Rh 0.50 Relative humidity
rho_v_sat_inf 0.0173 mass density of saturated water 

vapor at room temperature  
P_beam 1 Laser power
mu 150 absorption coeff (m^-1)
RW (R_waist) 0.0015 beam waist size (m)

T_room 293.15 room temp (K)

Value Description

(W)

Rho_L 1,000 density of liquid water  (kg/m^3)

Parameters
Tinf 293.15 Room Temp (K)
he 15 Heat convection coeff (W/m^2K)
hfg 2.35e6 phase-change  enthalpy (J/kgK)
Rh 0.50 Relative humidity
rho_v_sat_inf 0.0173 mass density of saturated water 

vapor at room temperature  
P_beam 1 Laser power
mu 150 absorption coeff (m^-1)
RW (R_waist) 0.0015 beam waist size (m)

T_room 293.15 room temp (K)

Value Description

(W)

Rho_L 1,000 density of liquid water  (kg/m^3)
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Table 3b.  Relations between the expressions describing the evaporation problem 

Expressions

Term Expression Description
hm he*(1e-6*Tcc+0.0009) Convection mass 

transfer coeff
(m/s)

Qsource 2.*P_beam/(pi*r_waist^2)*exp(-
2.*r^2/(r_waist^2))*exp(-mu*z)

Laser source power 
density (W/m^3)    

Tcc T-273 Conversion from 
cent. To Kelvin 
Temp

pho_v_sat_surf 1e-3*(4e-6*Tcc^4-6e-
5*Tcc^3+0.0196e-
3*Tcc^2+0.1534*Tcc+6.1098)

Density of 
saturated water 
vapor at z=0 
surface

Qvap hfg*hm*(pho_v_sat_surf-
rho_v_sat_inf)

Evap surface heat 
losses (W/m^2)           

Qconv_surf he*(T-Tinf) Conv. surface 
losses (W/m^2)

Expressions

Term Expression Description
hm he*(1e-6*Tcc+0.0009) Convection mass 

transfer coeff
(m/s)

Qsource 2.*P_beam/(pi*r_waist^2)*exp(-
2.*r^2/(r_waist^2))*exp(-mu*z)

Laser source power 
density (W/m^3)    

Tcc T-273 Conversion from 
cent. To Kelvin 
Temp

pho_v_sat_surf 1e-3*(4e-6*Tcc^4-6e-
5*Tcc^3+0.0196e-
3*Tcc^2+0.1534*Tcc+6.1098)

Density of 
saturated water 
vapor at z=0 
surface

Qvap hfg*hm*(pho_v_sat_surf-
rho_v_sat_inf)

Evap surface heat 
losses (W/m^2)           

Qconv_surf he*(T-Tinf) Conv. surface 
losses (W/m^2)
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Figure 20.  The simulated temperature profile in a cylindrical container of water is shown. Evaporative cooling 
and convective heart exchange take place at the top boundary, where z equals zero. Results for time equals eight 
seconds are presented. Laser input power equals 1W. Maximum temperature equals 312K; Minimum temperature 
equals 293.15K 
 
 
 5.2   SURFACE TENSION AT A FREE SURFACE: THE MARANGONI 

EFFECT 
 
Surface tension at the surface of a liquid may be caused by radius-of-curvature variations along 
the surface and/or by temperature gradients along the surface [Pimputkar and Ostrach., 1980].  
 
The production of surface tension by variations of the radius of curvature along a surface is 
described by Laplace’s Law [Landau and Lifshitz, 1959]. This effect is commonly small for the 
temperature range considered in this report.  
 
The production of surface tension by temperature gradients along a free surface is described as 
the Marangoni Effect [Levich, 1962; Levich and Krylow, 1969; Longtin et al, 1999]. The surface 
boundary condition at the liquid-air interface is given in terms of the surface stresses that are 
produced by Marangoni convection; these stresses at the liquid-air interface are given as 
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where x is the direction tangent to the surface and y is the direction normal to (and into) the 
surface. The parameter γ is equal to the derivative of the surface tension with respect to 
temperature. A plot of the surface tension vs. temperature of water is shown in figure 21. The 
parameter γ is determined by taking the derivative with respect to temperature of the curve 
shown in Figure 21.   
 
The surface tension would drive fluid flow at and near the free surface [Yih, C.S, 1968, 1969]. A 
simulation showing the flow induced by Marangoni convection is given in the COMSOL 
Multiphysics Modeling Guide [2005]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21.  Surface tension vs. temperature of water. The value of the parameter γ can be found by taking the 
derivative of this curve. 
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6. SUMMARY 
 
Mathematical models and their simulated results are presented to describe heat transfer from a 
penetrating laser beam in a rectangular container of water. Beer’s law is used as an 
approximation of the absorption loss of the laser beam, and scattering effects are neglected. Both 
convective and conductive heat transfer are considered. COMSOL software is used to find finite-
element simulation results for convective flow velocity and temperature changes within the 
container. Both simulated results and dimensional analysis indicate that convective flow is 
important.  
 
The following suggestions are made concerning the manner in which this work can be extended 
in future investigations: 
 

1. The simulated temperature changes could be coupled with calculated optical effects in 
which changes of refractive index with temperature can be taken into account. The 
importance of thermal convection on the optical measurements has been suggested in 
experiments by Vincelette et al [2007]. 

 
2. The simulated temperature changes should be verified experimentally. For this purpose, 

the temperature mapping methods of Maswadi et al [2004] could be used. 
 

3. The work can be extended to incorporate surface phenomena, as described in chapter 5, 
with the heat conduction/convection simulations presented in chapter 4.This work can be 
further extended to include the simulation of temperature changes and the associated 
changes in the optical properties of a tear film at the surface of the cornea of the eye.
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